
Program Conversion for Detecting Data Races

in Concurrent Interrupt Handlers�

Byoung-Kwi Lee1, Mun-Hye Kang1, Kyoung Choon Park2, Jin Seob Yi3,
Sang Woo Yang3, and Yong-Kee Jun1,��

1 Department of Informatics, Gyeongsang National University,
Jinju 660-701, The Republic of Korea

{lbk1116,kmh,jun}@gnu.ac.kr
2 Aero Master Corporation, 668-1 Bangji-ri, Sanam-myeon,

Sacheon-si, Gyeongsangnam-do, Korea
gilsion@amc21.co.kr

3 Korea Aerospace Industriers, LTD., 802 Yucheon-ri, Sanam-myeon,
Sacheon-si, Gyeongsangnam-do, Korea
{avionics,sangyang}@koreaaero.com

Abstract. Data races are one of the most notorious concurrency bugs in
explicitly shared-memory programs including concurrent interrupt han-
dlers, because these bugs are hard to reproduce and lead to unintended
nondeterministic executions of the program. The previous tool for detect-
ing races in concurrent interrupt handlers converts each original handler
into a corresponding thread to use existing techniques that detect races
in multi-threaded programs. Unfortunately, this tool reports too many
false positives, because it uses a static technique for detecting races. This
paper presents a program conversion tool that translates the program
to be debugged into a semantically equivalent multi-threaded program
considering real-time scheduling policies and interrupt priorities of pro-
cessor. And then, we detect races in the converted programs using a
dynamic tool which detects races in multi-threaded programs. To eval-
uate this tool, we used two flight control programs for unmanned aerial
vehicle. The previous approach reported two and three false positives in
these programs, respectively, while our approach did not report any false
positive.

Keywords: Races, Concurrent Interrupt Handler, Threads, Embedded
Software, Dynamic Analysis.

� This research was performed as a part of R&D program Air-BEST (Airborne Em-
bedded System and Technology) funded by MKE (Ministry of Knowledge and Econ-
omy). This research was financially supported by the Ministry of Education, Science
Technology (MEST) and National Research Foundation of Korea (NRF) through
the Human Resource Training Project for Regional Innovation.

�� Corresponding author: In Gyeongsang National University, he is also involved in the
Research Institute of Computer and Information Communication (RICIC) and GNU
Engineering Research Institute (ERI).

T.-h. Kim et al. (Eds.): ASEA/DRBC/EL 2011, CCIS 257, pp. 407–415, 2011.
c© Springer-Verlag Berlin Heidelberg 2011



408 B.-K. Lee et al.

1 Introduction

Data races [10] are one of the most notorious concurrency bugs in explicitly
shared-memory concurrent programs, because these bugs are hard to reproduce
and lead to unintended non-deterministic executions of the program. A data
race is a pair of concurrent accesses to a shared variable which include at least
one write access without appropriate synchronization. Since these races lead
to unintended non-deterministic executions of the program, it is important to
detect the races for effective debugging. These races may also occur in embedded
software which often includes concurrent interrupt handlers. A previous program
conversion tool [14] for detecting data races in concurrent interrupt handlers
converts the program into a semantically equivalent multi-threaded program
so that an existing thread verification tool can be used to find the races in
the original program using static race detection. Unfortunately, this technique
reports too many false positives without any false negative, because it uses a
static technique.

This paper presents a novel conversion tool that converts an original pro-
gram with concurrent interrupt handlers into a semantically equivalent POSIX
threads [3] considering real-time scheduling policies and interrupt priorities of
processor. And then, we detect races in the converted programs using a dynamic
detection tool [1,6], called Helgrind+, developed for multi-threaded programs.
Helgrind+ is an extension of the Helgrind tool which is a Valgrind tool [17] to
detect synchronization errors in C, C++, and Fortran programs that use the
POSIX threads. We empirically compared our approach with the previous one
using two flight control programs of unmanned aerial vehicle (UAV). The previ-
ous approach reports two and three false positives in each program, respectively,
while our approach does not report any false positive with still more false nega-
tives than the previous static approach.

Section 2 introduces concurrent interrupt handlers and explains previous tech-
niques for detecting races in multi-threaded programs. Section 3 presents our
conversion tool that converts each concurrent interrupt handler into a seman-
tically equivalent POSIX thread. Section 4 empirically shows our approach is
practical with two flight control programs of UAV. The final section concludes
our argument.

2 Background

An interrupt [14] is a hardware mechanism used to inform the CPU that an
asynchronous event has occurred. When an interrupt is recognized, the CPU
saves part or all of its context and jumps to a special subroutine called an in-
terrupt handler. Microprocessors allow interrupts to be ignored or recognized
through the use of two special machine instructions: disable interrupt, or enable
interrupt, respectively. In a real-time environment, every period of interrupt dis-
abling should be as shortly as possible. Interrupt disabling may affect interrupt
processing to be delayed or ignored, and then cause such interrupts to be missed.
Most processors allow interrupts to be nested.



Program Conversion for Detecting Dynamic Data Races 409

The structure of common embedded software has two major components as
shown in Figure 1: concurrent interrupt handlers called foreground routines [7],
and the main routine, called the background routine, which is one infinite loop.
These concurrent interrupt handlers may also involve data races. Data races [10]
occur when two parallel threads access a shared memory location without proper
inter-thread coordination, and at least one of these accesses is a write. Since
these races lead to unintended non-deterministic executions of the program, it
is important to detect the races for effective debugging.

The previous tool [14] for detecting races in concurrent interrupt handlers
converts each handler into a corresponding thread to use existing techniques
that detect races in multi-threaded program. Such the techniques can be clas-
sified into static and dynamic techniques. Static analysis [9,12,13] consider the
entire program and warn about potential races in all possible execution orders.
However, these techniques tend to make conservative assumptions that lead to
a large number of false positives. Therefore, the previous approach reports too
many false positives without any false negative, because it uses a static tech-
nique for detecting races. On the other hand, dynamic techniques [1,6,16] report
still less false positives than static techniques, but their coverage is limited to
the paths and thread interleaving explored at runtime. In practice, the cover-
age of dynamic techniques can be increased by running more tests. In addition,
dynamic data races detectors are severely limited by their runtime overhead.

There are two different methods for dynamic race detection in multi-threaded
programs: post-mortem and on-the-fly methods. A post-mortem technique
records events that occur during a program execution, and then analyzes or

Fig. 1. A Dynamic Structure of Embedded Software



410 B.-K. Lee et al.

replays them after the program execution. An on-the-fly technique records and
analyzes information during a program execution. This technique is based on
lockset [4,6,15] or happens-before algorithm [2,4,11]. A lockset algorithm checks
if two threads accessing a shared memory location hold a common lock. This
algorithm is practically efficient, while it reports many false positives. A happens-
before algorithm is based on Lamport’s happens-before relation [8]. This algo-
rithm may report still fewer false positives, while it incurs huge overhead in
performance. Therefore, recent race detectors tend to combine happens-before
techniques with lockset based ones to obtain the advantages of both algorithms.

3 A Program Conversion Tool

This paper presents a novel tool that converts an original program with con-
current interrupt handlers into the corresponding set of semantically equivalent
POSIX thread [3] considering real-time scheduling policies and interrupt pri-
orities of processor. Therefore, we detect the races in the converted programs
using a dynamic detection tool for multi-treaded programs to reduce false pos-
itives. The dynamic tool is Helgrind+ that is an extension of Helgrind which
combines the happens-before algorithm and the Lockset algorithm. Helgrind is a
Valgrind tool [17] for detecting races in C, C++ and Fortran programs that use
the POSIX threads. It uses an Eraser algorithm [15] which is improved based
on the happens-before algorithm of VisualThreads [5] in order to reduce false
positives.

Figure 2 shows the design of our tool which consists of three steps: a source
scanner, a foreground conversion, and a background conversion. The original
source code is scanned by source scanner module. The foreground one converts
every interrupt handler into a POSIX thread using two modules: an interrupt
handler exploration, and function pointer conversion. The interrupt handler ex-
ploration module explores the interrupt handlers using the interrupt vector table

Fig. 2. Design of Program Conversion Tool



Program Conversion for Detecting Dynamic Data Races 411

that defines interrupt priorities of processor and function names used at con-
version time. The function pointer conversion converts the explored interrupt
handlers into the corresponding function pointers, and records the results into
the interrupt handler table. These results are used as the parameters to call
pthread create() which creates POSIX threads for concurrent interrupt han-
dlers. To handle interrupts that occur asynchronously, the each handler function
is converted to be included into an infinite loop.

The background conversion consists of three modules to apply priorities and
real-time scheduling: POSIX thread creation, threadpriority application, and real-
time scheduling policies. Interrupts are activated and deactivated using sei() and
cil() functions, respectively, in the processor developed by ATmel which provides
the WinAVR compiler. Therefore, the POSIX thread creation module converts ev-
ery code which calls sei() function into one pthread create() calling. We use
only two of four parameters needed in the function: the thread identifier and the
function that will automatically run at the end of the thread creation process using
the information stored in the interrupt handler table. Also, the module deletes or
annotates every code that calls the cil() function, because the function is of no
use in POSIX threads.To execute the convertedprogramunder the same condition
with that of the original source code, we apply the thread priorities and real-time
scheduling in the last two steps of conversion.The thread priority application mod-
ule changes attributes of threads using the interrupt handler table. The real-time
scheduling module sets its policies. We use the PHREAD EXPLICIT SCHED op-
tion provided in POSIX real-time threads to change the policy. A list of optional
policies is as follows.

(1) The SCHED FIFO option allows a thread to run until another thread becomes
ready with a higher priority, or until it blocks voluntarily. When a thread
with this option becomes ready, it begins executing immediately unless a
thread with equal or higher priority is already executing.

(2) The SCHED RR option is much the same as SCHED FIFO policy except
that the running thread will be preempted so that the ready thread can
be executed, if a thread is ready with SCHED RR policy executes for more
than a fixed period of the time slice interval without blocking, and another

Fig. 3. User Interface of Program Conversion Tool



412 B.-K. Lee et al.

thread with SCHED RR or SCHED FIFO policy and the same priority.
When threads with SCHED FIFO or SCHED RR policy wait on a condition
variable or wait to lock a mutex, they will be awakened in priority order.

(3) The SCHED OTHER option may be an alias for SCHED FIFO, or it may be
SCHED RR, or it may be something entirely different. The real problem
with this ambiguity is not that we do not know what SCHED OTHER does,
but that we have no way of knowing what scheduling parameters it might
require.

4 Experimentation

Figure 3 shows the user interface of our tool that has been implemented in the
C# language under the Windows operating system. Using the interface, the
user selects the program to be debugged, the processor type, and the real-time
scheduling policy to convert the program into a POSIX thread-based program.

To evaluate the accuracy of our tool, we use two programs with concurrent
interrupt handlers for UAV flight control. These programs are parts of a UAV
ground control station. The first program is the Knob Assembly Control (KAC)
that is a firmware embedded into the micro controller unit of Knob assembly to
execute autopilot commands by communicating with a real-time computer of the
ground control station. KAC controls the altitude, the speed, the roll/heading
and the azimuth angles of an aircraft. The part shown in dotted line in Figure 4
shows a Knob assembly. If the KAC gets commands to control aircraft by real-
time computer, it outputs those values have been input by user using the Knob
dials to the dot matrixes and the real-time computer. A micro controller unit
communicates with a dot matrix using the Inter Integrated Circuit (I2C) or the
Two-wire Serial Interface (TWI), and communicates with the real-time computer
using RS-232C. Commands or some feedback on the commands are transmitted

Fig. 4. Structure of KAC/FSC Program



Program Conversion for Detecting Dynamic Data Races 413

on a cycle, 20Hz, by a timer interrupt and a serial communication interrupt.
The second program is the Fixed Switch Control (FSC) that is also a firmware
embedded in the micro controller unit of the Fixed Switch to control a parafoil
or an engine for collecting an aircraft without runaway by communicating with
the real-time computer. The part shown in dashed or dotted-line in Figure 4
represents the Fixed Switch. This program passes commands to the real-time
computer and receives feedback from the real-time computer on a cycle. We
assume that these programs are executed according to the scenarios denoted in
Figure 5.

We translated these programs into thread-based programs using our tool im-
plemented in C# language. We detect races in those programs using Helgrind+.
We have performed experiments on Intel Pentium 4 with 2GB of RAM under
Fedora 12 operating system. To empirically compare the accuracy, we installed
Helgrind+ for dynamic race detection and Locksmith [13,14] for static race detec-
tion. We used the MSM-short (Memory State Machine for short-running appli-
cation) option [1] provided in Helgrind+. This option is suitable for unit testing
of program development or debugging of program with short execution time.
We experimented for the race detection five times with each scheduling policy,
because the result of race detection with Helgrind+ is affected by the real-time
scheduling policy.

Figure 6 shows the result of race detection with Helgrind+ and Locksmith.
The third and the fourth columns of Figure 6 show the number of races de-
tected by Locksmith and Helgrind+, respectively. The fourth column is divided
into four subcolumns according to the real-time scheduling policies: FIFO, RR,
OTHER, and non-real time. In the KAC program, Locksmith detected one race
toward each of ten shared variables. By source code analysis, we found that

Fig. 5. Execution Scenario for Experimentation



414 B.-K. Lee et al.

Program Result of 
Detection

Static Tool
(Locksmith)

Dynamic Tool
(Helgrind+)

FIFO RR OTHER Non-
RealTime

KAC

True
Positives 8 3 1 3 6

false
positives 2 0 0 0 0

false 
negatives 0 5 7 5 2

FSC

True
Positives 5 2 2 3 3

false
positives 3 0 0 0 0

false 
negatives 0 3 3 2 2

Fig. 6. Result of Data Race Detection

races detected toward two shared variables of them are false positives, because
the source code involved in the races are executed once in a program execution
to allocate memory before activating interrupt handlers. On the other hand, Hel-
grind+ detects one race toward each one of three, one, and three shared variables
with FIFO, RR and OTHER, real-time scheduling, respectively. Also, the tool
detects one race toward each one of six shared variables without any scheduling
policy. Helgrind+ does not report a false positive. Thus, the results are different
according to scheduling policies. The reason is that partial order executions of
program depend on scheduling policies. In the FSC program, the two tools have
also produced similar results.

5 Conclusion

This paper presents a program conversion tool that converts the concurrent
interrupt handlers into semantically equivalent POSIX threads considering real-
time scheduling policies and interrupt priorities of processor, and then detects
the races in the converted programs using a dynamic detection tool, called Hel-
grind+, developed for multi-threaded programs.

By using two flight control programs of unmanned aerial vehicle, we were
able to identify the existence of races in the embedded software with concurrent
interrupt handlers. And the results of experiment show that the previous tool
reports two and three false positives without any false negative in each software,
while our tool does not report any false positive. However, our tool reports still
more false negatives than the previous tool. There still remains more work which
include additional effort to effectively improve the portability without among
various hardware.



Program Conversion for Detecting Dynamic Data Races 415

References

1. Jannesari, A., Bao, K., Pankratius, V., Tichy, W.F.: Helgrind+: An efficient dy-
namic race detector. In: Proceedings of the 2009 IEEE International Symposium
on Parallel Distributed Processing, pp. 1–13. IEEE Computer Society Press, Wash-
ington, DC, USA (2009)

2. Banerjee, U., Bliss, B., Ma, Z., Petersen, P.: A theory of data race detection. In:
Proceedings of the 2006 Workshop on Parallel and Distributed Systems: Testing
and Debugging, PADTAD 2006, pp. 69–78. ACM, New York (2006)

3. Butenhof, D.R.: Programming with posix threads. Addison-Wesley Professional
(1997)

4. Dinning, A., Schonberg, E.: Detecting access anomalies in programs with criti-
cal sections. In: Proceedings of the 1991 ACM/ONR Workshop on Parallel and
Distributed Debugging, PADD 1991, pp. 85–96. ACM, New York (1991)

5. Edelstein, O., Farchi, E., Nir, Y., Ratsaby, G., Ur, S.: Multithreaded java program
test generation. In: Proceedings of the 2001 Joint ACM-ISCOPE Conference on
Java Grande, JGI 2001. ACM, New York (2001)

6. Jannesari, A., Tichy, W.F.: On-the-fly race detection in multi-threaded programs.
In: Proceedings of the 6th Workshop on Parallel and Distributed Systems: Testing,
Analysis, and Debugging, PADTAD, pp. 6:1–6:10. ACM, New York (2008)

7. Labrosse, J.J.: Microc/os-ii the real-time kernel, 2nd edn., pp. 32–66. CMP Books
(2002)

8. Lamport, L.: Time, clocks, and the ordering of events in a distributed system.
Communications of ACM, 558–565 (1978)

9. Le, W., Yang, J., Soffa, M.L., Whitehouse, K.: Lazy preemption to enable path-
based analysis of interrupt-driven code. In: Proceeding of the 2nd Workshop on
Software Engineering for Sensor Network Applications, SESENA 2011, pp. 43–48.
ACM, New York (2011)

10. Netzer, R.H.B., Miller, B.P.: What are race conditions?: Some issues and formal-
izations. ACM Lett. Program. Lang. Syst. 1, 74–88 (1992)

11. Park, S.H., Park, M.Y., Jun, Y.K.: A Comparison of Scalable Labeling Schemes
for Detecting Races in OpenMP Programs. In: Eigenmann, R., Voss, M.J. (eds.)
WOMPAT 2001. LNCS, vol. 2104, pp. 68–80. Springer, Heidelberg (2001)

12. Pessanha, V., Dias, R.J., Lourenço, J.A.M., Farchi, E., Sousa, D.: Practical verifi-
cation of high-level dataraces in transactional memory programs. In: Proceedings
of the Workshop on Parallel and Distributed Systems: Testing, Analysis, and De-
bugging, PADTAD 2011, pp. 26–34. ACM, New York (2011)

13. Pratikakis, P., Foster, J.S., Hicks, M.: Locksmith: context-sensitive correlation anal-
ysis for race detection. SIGPLAN Not. 41, 320–331 (2006)

14. Regehr, J., Cooprider, N.: Interrupt verification via thread verification. Electron.
Notes Theor. Comput. Sci. 174, 139–150 (2007)

15. Savage, S., Burrows, M., Nelson, G., Sobalvarro, P., Anderson, T.: Eraser: a
dynamic data race detector for multithreaded programs. ACM Trans. Comput.
Syst. 15, 391–411 (1997)

16. Tahara, T., Gondow, K., Ohsuga, S.: Dracula: Detector of data races in signals
handlers. In: Asia-Pacific Software Engineering Conference, pp. 17–24 (2008)

17. Valgrind-project: Helgrind: a data-race detector (2007)


	Program Conversion for Detecting Data Races 
in Concurrent Interrupt Handlers
	Introduction
	Background
	A Program Conversion Tool
	Experimentation
	Conclusion
	References




